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Abstract 
 
The neurocognitive systems that underlie the ability to process rewards and learn from 
reinforcement undergo substantial changes across the adult lifespan. Adolescence is 
often characterized as a developmental period with a heightened sensitivity to reward 
and healthy aging is typically associated with a decline in learning from reinforcement. 
In this Chapter we review how the psychological and neural mechanisms that underpin 
reward processing and reinforcement learning change from adolescence to older 
adulthood. We consider behavioral and neuroimaging studies, as well as how different 
reward and learning contexts, such as gain vs. loss and social vs. non-social 
information, may alter reward processing and reinforcement learning abilities. We end 
by considering the challenges and opportunities of conducting developmental and 
aging studies in computational neuroscience and suggest future directions for the field. 
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Key Points 
 

• We review studies examining reward processing and reinforcement learning 
across the adult life course 

 
• Reward processing is affected by several factors including time, effort, 

uncertainty and anticipation that may each display different age-related 
trajectories 

 
• Reinforcement learning includes different types of learning such as habitual, 

goal-directed, instrumental and Pavlovian learning, which may each display 
different age-related trajectories 

 
• The neural architecture supporting reward and reinforcement undergoes 

change from adolescence to older age 
 

• Reward processing and reinforcement learning in different contexts such as 
social vs. non-social can show different age-related trajectories  

 
• These findings suggest important targets to scaffold healthy reward processing 

and learning across the lifespan 
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Introduction 
 
Processing rewards and learning from reinforcement is essential in everyday life. 
When we make a choice, we must compare the rewards – such as money – with the 
costs – how long we need to wait, how much effort is required, or how uncertain the 
outcome is. After the choice, we need to learn whether to repeat it or try a different 
course of action. But how do we decide whether rewards are worth the costs and then 
learn from reinforcement? Despite the centrality of reward processing and learning 
throughout our lives, research suggests that these abilities change profoundly from 
adolescence to old age. Adolescence is often considered a developmental period with 
heightened sensitivity to reward, resulting in risky and impulsive behaviors (Galván, 
2013; Van Leijenhorst et al., 2010). In parallel, aging is associated with declines in 
cognitive process that are crucial for learning, such as working memory (Samanez-
Larkin and Knutson, 2015). There are also co-occurring neural changes throughout 
the lifespan, particularly in basal ganglia and prefrontal cortex, which underpin reward 
processing and reinforcement learning (Hartley and Somerville, 2015; Samanez-
Larkin and Knutson, 2015). Understanding why, when, and how behavioral and neural 
changes happen is essential if we want to optimize reward processing or learning 
strategies and intervene when these go wrong.  
 
We start the Chapter by discussing studies of reward processing where learning is not 
required and putative similarities and differences across the adult lifespan. We then 
discuss different types of reinforcement learning and end by considering the influence 
of different contexts, as well as challenges and opportunities for adult lifespan 
research. 

Reward Processing 
 
First, we focus on studies that have examined reward processing outside the context 
of learning. We review studies of delay discounting, effort-based decision making, 
decisions under uncertainty, and reward anticipation. 
 
Intertemporal Decision Making 
 
Temporal discounting, also known as delay discounting, refers to the phenomena that 
the same reward is valued less if you have to wait for it, than if you were to receive it 
immediately (Frederick et al., 2002). Typical paradigms involve choices between a 
smaller but sooner (often immediate) reward and a larger reward with a longer delay 
(Figure 1A). For example, would you prefer $10 today or $20 next month? People of 
all ages generally behave economically ‘irrationally’, discounting delayed rewards to 
choose sooner rewards, even when they are smaller. Sensitivity to delay can be 
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measured in individuals using computational models of discounting (Green et al., 
1996, 1994). An early neuroimaging study in young adults found activity in frontal and 
striatal regions including ventromedial prefrontal cortex (vmPFC), posterior cingulate 
cortex (PCC) and ventral striatum tracked the value of delayed rewards, based on 
individuals’ tendencies to be patient or impatient (Kable and Glimcher, 2007). 
 
Adolescence 
 
Robust evidence shows willingness to wait for rewards increases between childhood 
and adulthood (de Water et al., 2014; Olson et al., 2007; Ripke et al., 2012; Scheres 
et al., 2014, 2006; Steinberg et al., 2009; van den Bos et al., 2015; Yu et al., 2021). 
Willingness to wait increases sharply around age 15-16 (de Water et al., 2014), 
reaches adult levels by late adolescence (Steinberg et al., 2009), or peaks at age 14 
and then declines into adulthood (Scheres et al., 2014). Higher patience from 
childhood to adolescence is apparent even when delays are short (Scheres et al., 
2006) or how much participants value money is taken into account (de Water et al., 
2014). Neurally, decreasing discounting during adolescence has been linked to 
frontostriatal (Christakou et al., 2011) and parietal regions (Ripke et al., 2012). One 
study showed that delay length was linked to parietal regions whereas striatal areas 
were associated with the amount of money on offer (de Water et al., 2017). Finally, 
studies using electroencephalogram (EEG) recordings and delay discounting tasks 
have also suggested that electrical activity linked to immediate rewards develops 
early, whereas signals reflecting waiting for delayed rewards develop later in 
adolescence (Yu et al., 2021).  
 
Aging 
 
Initial studies of delay discounting comparing young and older adults showed 
increased willingness to wait for rewards in older age (Eppinger et al., 2012; Green et 
al., 1994; Löckenhoff et al., 2011). However, results were inconsistent with some 
showing no effect (Löckenhoff and Samanez-Larkin, 2020; Rieger and Mata, 2015; 
Samanez-Larkin et al., 2011) or decreased patience with age (Read and Read, 2004). 
A recent meta-analysis combining all of this work (n=104,737) found evidence for no 
difference in how money is discounted across the adult lifespan (Seaman et al., 2022). 
Despite no differences in levels of discounting between older and younger adults, it is 
possible that intertemporal decisions rely on distinct processes, motivations, and 
neural systems at different ages. Evidence for more nuanced differences was 
suggested by opposing effects of decision conflict on discounting between older and 
younger adults (Eppinger et al., 2018). High decision conflict – two options close to 
the participant’s indifference point rather than one that was strongly preferred – made 
older adults more impatient but younger adults more patient, and this was linked to 
their working memory ability. Another factor perhaps explaining inconsistency is that 
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individual income strongly predicts temporal discounting, with older adults on low 
incomes less willing to wait for rewards than those on higher incomes (Green et al., 
1996). 
 
Although the meta-analysis suggested financial discounting is stable across 
adulthood, discounting rewards that are not economic shows differing age trajectories. 
When rewards are social or health-related, older adults have stronger preferences for 
the sooner rewards than young adults (Seaman et al., 2016). Age differences in 
discounting were also found for choices involving charitable donations. Only older 
participants chose timing options that maximized their overall donations, whereas 
preferences were similar between young and older adults when money was for 
themselves (Sparrow and Spaniol, 2018). 
 
Effort-based Decision Making 
 
Just as people discount or value rewards less if they have to wait for them, rewards 
are valued less if we have to work for them (Apps et al., 2015; Hull, 1943; Kool and 
Botvinick, 2018; Westbrook and Braver, 2015). If all else is equal, people choose 
options that require less effort as effort is aversive. Various experimental paradigms 
have been used to manipulate effort. For example, participants might choose between 
a small reward that does not require effort and a high-reward high-effort option that 
requires them to solve cognitive problems (Figure 1B), remember lots of numbers 
(cognitive effort), squeeze a grip force device (Figure 1C) or click a button many times 
(physical effort) to obtain it. Like temporal discounting, the impact that the effort 
required has on devaluing the reward available can be captured by a discounting 
parameter (Białaszek et al., 2017; Hartmann et al., 2013; Klein-Flugge et al., 2015). 
The discounting parameter can vary in shape (linear, hyperbolic and parabolic 
functions are commonly-used discount functions). Different types of effort, for example 
cognitive vs. physical have been associated with different discounting preferences. 
For example, computational models of cognitive and physical effort discounting have 
shown that individuals have preferences to specifically avoid either cognitive or 
physical effort or both, despite no overall differences in discounting (Chong et al., 
2017). Studies in young adults have linked dorsal anterior cingulate cortex (ACC) and 
anterior insula with effort and motivation (Chong et al., 2017; Le Heron et al., 2018; 
Lockwood et al., 2022; Pessiglione et al., 2018) and frontal and striatal regions with 
reward (Klein-Flugge et al., 2015; Lopez-Gamundi et al., 2021; Müller et al., 2021). All 
these regions also track subjective value, which combines the effort required and 
reward available (Croxson et al., 2009; Holroyd and McClure, 2015; Soutschek et al., 
2018; Vassena et al., 2014; Verguts et al., 2015). 
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Figure 1. Experimental tasks to measure reward processing during decision-making and 
reward anticipation. (A) Example of a canonical temporal discounting task with a choice between an 
immediate smaller reward and a delayed larger reward (e.g. Seaman et al., 2016). (B) Example of 
tasks measuring decisions under uncertainty involving risk (left) or ambiguity (right). In risk tasks the 
uncertain option has known probabilities whereas in ambiguous tasks they have unknown 
probabilities. Blue full circles represent a certain smaller reward whereas the red and blue “spinner” 
gives a chance of no reward and a chance of a larger reward (e.g. Blankenstein et al., 2016). (C) 
Example of a cognitive discounting task using a visual search of differing difficulties to manipulate 
levels of cognitive effort. Participants choose between a low-reward, low-effort baseline option and a 
high-reward, high-effort offer. (D) Physical effort task with the same structure as (C), both from 
(Chong et al., 2017). (E) Example of the Monetary Incentive Delay task to separately measure brain 
activity during reward anticipation and feedback showing a reward outcome (e.g. Knutson et al., 
2000). 
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One factor that seems to moderate age differences is whether uncertain outcomes are 
gains or losses. Multiple studies have shown lower risk seeking in older age is limited 
to the gain domain with either no age differences for losses (Best and Charness, 2015; 
Rutledge et al., 2016) or increased risk seeking in the loss domain (Best and Freund, 
2018; Mather et al., 2012; Tymula et al., 2013) but also see (Kurnianingsih et al., 
2015). This pattern of risk preferences was distinct from ambiguity where older adults’ 
preferences were identical to adults of other ages for gains (ambiguity aversion) but 
only older adults were also averse to ambiguity for losses (Tymula et al., 2013).  
 
Adolescence 
 
There is evidence that pre-adolescent children (aged 5-11) are sensitive to different 
levels of cognitive effort (Ganesan and Steinbeis, 2021). For example, adolescents 
aged 13-17 are less willing to invest cognitive effort for rewards when the level of 
cognitive effort required increases (Kramer et al., 2021) and discount monetary 
rewards by physical effort like adults do (Rodman et al., 2021). Similar brain areas 
have been shown to be involved in adolescents and adults during cognitive effort 
discounting, particularly dorsal ACC and anterior insula (Mies et al., 2018).  
 
Other studies suggest the type of reward and effort is an important factor for any age 
related differences. Adolescents are more willing than adults to exert physical effort 
when rewards are success in a computer game (Sullivan-Toole et al., 2019) and to 
obtain feedback from a peer (Rodman et al., 2020). Another factor is ability. 
Adolescents’ willingness to invest cognitive effort has been associated with their 
accuracy at performing the cognitive task (Kramer et al., 2021), which increases with 
age (Pelegrina et al., 2015). Moreover, adolescents might waste energy by exerting 
more force than required and exerting effort for small rewards, rather than saving 
energy for large rewards (Rodman et al., 2021). These studies highlight the 
importance of accounting for age-related differences in reward value (for example 
money, computer games or social information) and physical or cognitive ability to 
assess the development of effort discounting (Contreras-Huerta et al., 2020; Davidow 
et al., 2018). 
 
Aging  
 
Declines in cognitive abilities in older adulthood may lead to cognitive tasks being 
experienced as subjectively more effortful, making it difficult to isolate age-related 
changes in willingness to exert cognitive effort (Hess and Ennis, 2012). Indeed, one 
study showed older adults experienced cognitive effort as more costly than younger 
adults (Westbrook et al., 2013). Physical abilities also decline with age (Faulkner and 
Brooks, 1995). However, physical effort can be individually tailored to participants’ 
ability in experimental tasks by using percentages of their maximum grip strength, 
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always under 100%, as different levels of effort. Using this approach one study showed 
older adults were more willing to invest effort when gaining money for themselves and 
another person compared young adults (Lockwood et al., 2021). Interestingly the 
difference in motivation between young and older adults was larger when rewards 
were for another person, compared to the participant themselves. Age effects may 
also differ between gain and loss domains, with older adults more likely to choose 
physically easy options than young adults in gain contexts, but no difference between 
age groups in loss contexts (Byrne and Ghaiumy Anaraky, 2020). Finally, other 
research has considered levels of apathy, a symptom of reduced motivation that 
characterizes many psychiatric and neurological disorders but is also present to 
varying degrees in the general population (Husain and Roiser, 2018). A review on 
apathy in older adulthood found age-related increases in samples with diseases or 
disorders but concluded healthy aging is not associated with increased apathy (van 
Reekum et al., 2005). Future work could build on these behavioral studies to assess 
how the neural mechanisms of motivation and effort-based decision making interact 
with age-related changes in the biology underlying cognitive and physical capabilities. 
 
Decision Making Under Uncertainty 
 
Another type of decision that may show age-related differences is when outcomes are 
uncertain. Interestingly, neuroimaging evidence in healthy young adults has 
suggested overlap between decisions involving time, effort and uncertainty in regions 
such as vmPFC, striatum, and lateral prefrontal cortex, as well as activations unique 
to each cost (Soutschek and Tobler, 2018). There is also evidence that distinct 
subregions in medial and orbitofrontal cortex are involved in each context (Floresco et 
al., 2008). An important distinction within uncertainty is between risk and ambiguity 
(Figure 1D). Risky outcomes have a known probability, like a lottery with 100 tickets 
creating a 1% chance of winning. Ambiguity refers to unknown probabilities, for 
example if you don’t know how many lottery tickets have been bought. A functional 
magnetic resonance imaging (fMRI) meta-analysis in young adults separating risky 
decisions and ambiguous decisions, with perceptual decisions as a control, found 
common regions across risk and ambiguity but also differences (Poudel et al., 2020). 
Choices involving risk were associated with activity in striatum and ACC whereas 
decisions under ambiguity were linked with lateral prefrontal cortex and insula. 
 
Adolescence 
 
Adolescence is often characterized as a time of risk-taking or risk-seeking behaviors 
(van Duijvenvoorde et al., 2016) and there is evidence adolescents are more likely to 
choose uncertain gambles than adults in reward-based decision-making tasks (Defoe 
et al., 2015; van den Bos and Hertwig, 2017). Increased neural sensitivity to reward 



 9 

has been suggested as a potential mechanism and adolescents have shown 
increased ventral striatum activity when accepting risky gambles, even when risk-
taking behavior is matched with adults (Barkley-Levenson and Galván, 2014). 
However, other work has found adolescents do not differ in choices involving risk, with 
known probabilities. This was despite declining impatience in the same samples, 
suggesting a dissociation between the development of decisions involving risk 
compared to time (de Water et al., 2014; Olson et al., 2007; Scheres et al., 2006). In 
contrast, many studies have found lower aversion to, or increased tolerance of, 
ambiguity in adolescence compared to adulthood. Adolescents have been shown to 
have lower ambiguity aversion both when choosing between a risky and an ambiguous 
reward (Li, Brannon and Huettel, 2015) and between a certain and an ambiguous 
reward (Blankenstein et al., 2016; Tymula et al., 2012).  
 
These differing findings highlight the possibility of distinct developmental trajectories 
for processing risk and ambiguity (Blankenstein et al., 2021) and individual differences 
in neural activity within adolescents (aged 11-24) support this distinction. Increased 
risk-taking has been associated with higher ventral striatum activity, whereas 
ambiguity was linked to lower insula and dorsomedial PFC activity during decisions, 
but higher dorsolateral PFC activity during outcomes (Blankenstein et al., 2018). Real-
life “risk-taking” behaviors might be more accurately characterized by ambiguity, as 
the chance of negative outcomes like injury or death is unknown. Tolerance to 
ambiguity but not risk has been associated with real-life risk-taking, such as taking 
drugs or drinking and driving (Blankenstein et al., 2016; van den Bos and Hertwig, 
2017), although risk-taking and associated nucleus accumbens activity predicted 
future binge drinking (Morales et al., 2018). While these studies highlight negative 
outcomes of risk-taking, behaviors involving uncertainty can be positive, for example 
attending an audition or helping others (Crone and van Duijvenvoorde, 2021; Duell 
and Steinberg, 2019). 
 
Aging 
 
Older adulthood has been associated with declines in self-reported impulsivity, 
suggesting that processing uncertainty may also differ across the adult lifespan (König, 
2021). Initial work suggested age differences in risk-taking were only apparent when 
choices relied on learning, due to reduced learning ability not different risk preferences 
(Mata et al., 2011), or when one option was certain but not when deciding between 
two uncertain options (Mather et al., 2012). Older and younger adults were similar in 
probability (and effort and time) discounting behavior and neural activity, with 
subjective value across tasks and ages associated with medial prefrontal cortex 
response (Seaman et al., 2018). However, a systematic review found evidence that 
older adults were less willing to take risks than younger adults, across experimental 
tasks (Best and Charness, 2015). Longitudinal and cross-sectional analysis of self-
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report and experimental measures in a large sample concluded risk-taking was a trait 
(reasonably stable over time) but still decreased with age. This decrease translated 
into substantially different preferences in choices between a 50:50 chance to win €300 
(expected value €150) and a safe option of varying amounts. Participants aged 18-30 
required the safe option to be €93.60 on average to be preferable to the risky lottery, 
whereas older participants (70-85) preferred the safe option when it guaranteed them 
just €44.70 (Josef et al., 2016). Data on self-report and similar lottery questions from 
over 80,000 people in 76 countries also showed robust evidence for decreasing risk 
tolerance with age (Falk et al., 2018). Declining tolerance for risky rewards in old age 
has been linked to decreasing grey matter in the right posterior parietal cortex, with 
individual differences in this measure accounting for risk preferences better than age 
(Grubb et al., 2016). 
 
Reward Anticipation 
 
In the sections above, we have considered differences in how adolescents and older 
adults integrate rewards and costs, including time, effort and uncertainty, to make 
decisions. In the next section we review findings on age-related differences in reward 
anticipation before covering reward learning. Some of the first developmental studies 
on changes in reward processing invoked a now infamous paradigm, the monetary 
incentive delay task (MID; Knutson et al., 2000; Figure 1E). The adoption of the MID 
was inspired by concurrent work by Wolfram Schultz and colleagues that had shown 
firing of dopamine neurons in monkeys in the ventral tegmental area (VTA) to cues 
that indicated the high probability of receiving a reward during anticipation of rewards 
(Schultz et al., 1997). These same neurons did not fire in anticipation of a low 
probability of reward. The MID was designed to examine similar patterns of activity 
using human fMRI. In the MID, participants see a colored square and then respond to 
a white target with a speeded button press (Knutson et al., 2000). They then receive 
feedback showing whether they have won the reward or not. The task outcomes are 
calibrated to participants’ own reaction times such that participants succeed on roughly 
two thirds of trials. This separation of cue anticipation and reward or punishment 
delivery allowed researchers to measure neural responses at different stages of 
reward and punishment processing, with a focus on anticipation, paralleling the work 
by Schultz and colleagues (Schultz et al., 1997). Meta-analyses of fMRI studies in 
healthy adults showed the striatum, which receives strong input from the VTA, was 
involved when anticipating rewards (Figure 2A), receiving rewards (Figure 2B) and 
anticipating losses (Figure 2C), as well as other regions linked to anticipation such as 
anterior cingulate cortex and insula (Oldham et al., 2018; Wilson et al., 2018).  
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Figure 2. Striatum activity during reward processing and differences across the lifespan. Results 
from the monetary incentive delay task (Figure 1E) show activity in the striatum during (A) reward 
anticipation (B) reward outcome and (C) loss anticipation. Findings are from meta-analyses in healthy 
adults (Oldham et al., 2018; Wilson et al., 2018) and developmental work on adolescence (Bjork et al., 
2004; Cao et al., 2021; Hoogendam et al., 2013) and aging (Samanez-Larkin et al., 2007; Schott et al., 
2007; Vink et al., 2015). (D) Across adolescence, age is associated with increasing activity during 
reward anticipation (left) but decreasing activity during reward outcomes (right) in both left and right 
ventral striatum (Hoogendam et al., 2013) (E) The opposite pattern is found across older adulthood 
suggesting older adults also show reduced activity during anticipation but increased activity for reward 
outcomes like younger adolescents (Vink et al., 2015).  
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Adolescence  

Differences between adolescents and adults in neural responses during reward 
anticipation were predicted based on the idea that adolescence is a developmental 
period with increased risky behavior and impulsivity, as well as heightened sensitivity 
to reward. Generally, work using the MID and other similar tasks has supported the 
idea that reward anticipation is processed in similar brain structures in adolescents 
compared to adults (Figure 2). These regions include the basal ganglia (striatum, 
caudate and nucleus accumbens) as well as medial prefrontal and orbitofrontal areas 
(Bjork et al., 2007, 2004; Cao et al., 2021, 2019; Lorenz et al., 2014). An early study 
found that adolescents showed less ventral striatal activity than adults when 
anticipating rewards, but no age differences when rewards were consumed (Bjork et 
al., 2004). Lower activity in adolescents was interpreted within a hypoactivation 
framework, where diminished ventral striatal activity could lead to seeking more 
extreme incentives (Spear, 2000). However other work, including a recent longitudinal 
study (age 14 to 19) with a large sample of adolescents (n=1,241), showed 
adolescents have increased activity or hyperactivation in ventral striatum during 
reward anticipation (Cao et al., 2021; Lorenz et al., 2014). Striatal hyperactivation in 
adolescence compared to adulthood has been found when consuming, as well as 
anticipating, reward in multiple studies (Braams et al., 2015; Ernst et al., 2005; Galvan 
et al., 2006; Schreuders et al., 2018; Silverman et al., 2015) and linked to other factors 
such as increased dopamine signaling and risk-taking (for reviews see Somerville et 
al., 2010; Telzer, 2016; van Duijvenvoorde et al., 2016). Finally, one study found an 
age-related increase across adolescence (age 10-25) for activity in ventral striatum 
during reward anticipation (as well as other striatal regions, insula and ACC) but age-
related decline in reward outcome activity in ventral striatum (Hoogendam et al., 2013; 
Figure 2D). These opposing effects of age on striatal activity for reward anticipation 
and consumption were interpreted as the development of ability to predict rewards, 
which shifts activation away from the reward itself, to the anticipatory cue. This 
distinction may also explain inconsistencies in other findings as the nature of the task, 
cues and instructions may affect how easily or quickly the cue is associated with the 
reward outcome. 

Aging 
 
It is well known that levels of dopamine can decline even in healthy aging (Peters, 
2006). Therefore, studies of the MID in healthy aging can be informative for 
understanding if responses in dopamine-rich basal ganglia areas such as caudate and 
striatum also display age-related differences. Intriguingly, despite age-related 
dopaminergic declines, there is some evidence of intact striatal activation to 
anticipated rewards in older adults (Samanez-Larkin et al., 2007; Spaniol et al., 2015). 
However, there was an age-related reduction in neural responses and negative 
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feelings for loss cues (Samanez-Larkin et al., 2007). In contrast, other studies have 
found lower activity in the striatum during reward anticipation in older, compared to 
younger, adults (Dreher et al., 2008; Schott et al., 2007; Vink et al., 2015). These 
studies also found evidence that older adults had increased activity during reward 
receipt relative to younger adults (Schott et al., 2007; Vink et al., 2015). As with the 
findings in adolescence, age differences in opposing directions for reward anticipation 
and receipt were interpreted as due to age differences in predicting the cue, which 
shifts activation from the outcome to the anticipatory cue (Figure 2E). This shift occurs 
in younger adults and is critical for reinforcement learning. Finally, findings from 
comparing reward anticipation in adolescents, young adults, and older adults have 
shown increased insula and ACC activity for both adolescents and older adults, 
relative to younger adults, and increased activity in dorsolateral PFC and inferior 
parietal lobule activity for the older group only (Lorenz et al., 2014). These results 
suggest that while ventral striatum is a key region for reward anticipation and reward 
receipt, and activity here changes across the adult lifespan, a wide network of regions 
is involved. 

Reinforcement Learning 
 
From our first days in the world, we learn from reinforcement by reward. Ten-week-old 
infants increase the rate at which they kick their feet towards a brightly colored wooden 
mobile (Rovee and Rovee, 1969). Six-month-old infants are able to learn to look more 
often at a colored shape if it leads to a video cartoon (reward) than leads to nothing 
(Tummeltshammer et al., 2014). Given this early aptitude for learning, it is perhaps 
surprising that learning abilities could change so dramatically across development. 
However, several studies suggest that reinforcement learning does change 
substantially in adolescence and older adulthood. In the next section we introduce 
reinforcement learning theory and the biological basis of learning from rewards, then 
examine age differences in different types of learning. 
 
Findings from the monetary incentive delay task suggest similar basal ganglia and 
prefrontal regions are involved across adolescence and older age during the first steps 
of learning: anticipating reward and processing reward receipt. But what about when 
that information needs to be integrated for learning? Reinforcement learning theory 
(RLT) provides a theoretical, mathematical, and biologically plausible framework to 
understand how these learning and reward processing effects occur. RLT states that 
we learn based on expectations of reward and punishment. When our expectations 
are different from what happens we learn a lot, but when what we expect to happen 
does happen, we learn much less. RLT is arguably one of the most important 
influences on psychology, neuroscience and economics (Dayan and Balleine, 2002; 
Sutton and Barto, 1998).  
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Associative Learning 
 
Common tasks to assess reinforcement learning require participants to learn 
associations by performing an action, such as selecting one of two symbols, and 
observing the outcome (e.g. Pessiglione et al., 2006; Figure 3A). Outcomes can be 
rewards or punishments and learning about these different outcomes might show 
different developmental trajectories. Many tasks are probabilistic, meaning that 
actions are not always associated with a given outcome and participants must learn 
the more frequent associations. In reversal learning tasks, the pairing between actions 
and outcomes switches during the task to measure participants’ ability to flexibly learn 
new associations.   
 
Adolescence  
 
Developmental studies of reinforcement learning suggest that adolescents are more 
optimal in their learning than children, and young adults more optimal than adolescents 
(Nussenbaum and Hartley, 2019). Similarly, results from a deterministic learning task 
found increasing learning rates across adolescence (Master et al., 2020). While adults 
have been shown to be able to learn from both reward and punishment, there is 
evidence that adolescents learn better than adults from reward (Xia et al., 2021), but 
are less likely to learn from punishment (Palminteri et al., 2016). This imbalance in 
learning or heightened reward sensitivity may help explain the negative real-life 
outcomes common during adolescence such as increased alcohol intake, substance 
use and risky sexual behaviors. However, other studies have found heightened reward 
sensitivity resulted in more optimal learning and memory for rewards in adolescents 
compared to adults (Davidow et al., 2016). Here, prediction error signals were found 
in the hippocampus and stronger connectivity between hippocampus and striatum 
during reinforcement was linked with better learning. There is also inconsistency in 
whether reward, punishment or both differ across this developmental period. One 
issue in the literature is whether studies evaluate the optimal learning rate or the 
association between learning rate and accuracy for a given task (Zhang et al., 2020). 
The nature of the task also determines whether focusing on positive or negative 
prediction errors is beneficial. For example, one study showed that when ignoring 
irrelevant negative feedback was beneficial, learning ability increased from childhood 
to adulthood and was associated with connectivity between ventral striatum and 
medial prefrontal cortex (van den Bos et al., 2012).   
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Reversal learning tasks (with changeable outcome probabilities) require more flexible 
learning and there is evidence that overall accuracy and ability to use appropriate 
strategies increases from childhood to adulthood (Crawley et al., 2020). Using these 
tasks, adolescents have shown poorer punishment learning in compared to adults 
(Javadi et al., 2014), increase in reward learning rates in early adulthood (Eckstein et 
al., 2022) or increased punishment learning in adolescents compared to adults 
(Hauser et al., 2015; van der Schaaf et al., 2011). These differences have been 
associated with activation in anterior insula (Hauser et al., 2015) or no differences in 
neural response (Javadi et al., 2014). Recent work highlights the importance of 
experimental paradigms that can distinguish reward and punishment learning ability 
from impulsivity, characterized by a bias to initiate action versus withholding 
responses. Data from such a paradigm with a large sample (n=742) from several 
countries across Europe demonstrated that punishment learning improves across 
adolescence (from 9-18) whilst reward learning remains stable. In parallel, action 
initiation biases decrease with age (Pauli et al., 2022). 
 
Aging 
 
Aging is associated with alterations in several cognitive abilities. In contrast to some 
studies of basic reward processing and monetary incentive, that suggest relative 
stability across adulthood, it is generally agreed that learning declines in old age 
(Eppinger et al., 2011; Samanez-Larkin et al., 2014). This is also the case when non-
learning tasks (MID) and learning tasks are compared within the same participants 
(Eppinger et al., 2011; Samanez-Larkin et al., 2014). Studies have found that how the 
brain represents learning signals about reward is reduced in healthy aging. When older 
adults complete experimental tasks where they need to learn associations between 
their choices and outcomes, they appear to be worse at learning, particularly when the 
associations are probabilistic (Eppinger et al., 2011) or change (Mell et al., 2005). 
Studies suggest that dopamine receptors in the ventral striatum that are crucial for 
learning decline with age (van Dyck et al., 2002), which might help to explain learning 
changes. Intriguingly, one study found that learning could be improved in older adults 
if they were given a drug called L-DOPA, which increases the level of dopamine in the 
brain (Chowdhury et al., 2013). Therefore, learning abilities seems to improve from 
childhood to adolescence before somewhat declining in older age. 
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Figure 3. Learning tasks used in research on lifespan development. (A) Basic reinforcement 
learning tasks require participants to choose one of two images or symbols. One is associated with a 
higher chance of reward and the other with a lower chance of reward. Participants see whether they 
received a reward and learn by trial and error to choose the option which maximizes rewards (e.g. 
Pessiglione et al., 2006). This task therefore measures “model-free”, instrumental learning. Other 
versions use punishments instead of rewards. (B) Two-step task used to separate habitual from goal-
directed or “model-free” from “model-based” learning (Daw et al., 2011). Participants first choose 
between one of two images (green) and their choice probabilistically leads to one of two states 
depicted by different colors (blue or grey; common transition 70%, uncommon transition 30%; see 
right panel). In the second choice, participants choose between these options, which are 
probabilistically associated with reward (or punishment versions). (C) Task to measure Pavlovian 
biases during learning (e.g. Guitart-Masip et al., 2012). Participants see a single cue and either 
respond with a button press (“go” response, same side as the target is shown) or do not respond 
(“nogo”). Feedback is either punishment (red arrow), reward (green arrow) or no outcome (yellow 
line). Four cues each have a unique combination of outcome valence (reward / punishment) and the 
correct action (go / nogo). Pavlovian bias would promote learning or performance about go-reward 
and nogo-punishment cues but impair learning about nogo-reward and go-punishment cues. 
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Habitual vs. Goal-directed Learning 
 
An important distinction is between the habitual learning outline above, which is 
‘model-free’ – focused only on action-outcome associations, and learning that is goal-
directed and ‘model-based’ – reliant on forming internal models to maximize reward 
(Gläscher et al., 2010). Understanding this distinction is particularly acute for 
characterizing development. Model-free learning is thought to be simple and easy, 
with such basic learning mechanisms even being shown in plants (Gagliano et al., 
2016). In contrast, model-based learning is characterized as more effortful and require 
greater cognitive control from the learner to successfully execute (Kool et al., 2016). 
Data from tasks that separate model-free from model-based learning (Figure 3B) in 
young adults, showed model-free and model-based prediction errors are encoded in 
ventral striatum, during both reward and punishment (Daw et al., 2011; Lockwood et 
al., 2020b). 
 
Adolescence  
 
Research separating model-free and model-based learning has shown young adults 
(aged 18+) rely on a hybrid of model-free and model-based strategies whereas 
adolescents rely more on model-free learning, with model-based learning abilities 
increasing with age (Decker et al., 2016; Vaghi et al., 2020; Figure 4A). The increasing 
reliance on model-based learning is thought to reflect the protracted development of 
cognitive control from childhood to adolescence and adulthood (Davidow et al., 2018). 
In line with this idea, age-related improvements in working memory have been 
associated with co-occurring differences in prefrontal cortex (Satterthwaite et al., 
2013). Other work has suggested development of fluid reasoning, or solving problems 
by integrative diverse concepts, is a key component in the emergence of model-based 
control during adolescence (Potter et al., 2017). There is debate as to whether children 
engage in model-based learning at all. While there is evidence that some model-based 
abilities are present in childhood, children either do not arbitrate effectively between 
strategies (Smid et al., 2022) or cannot integrate model-based strategies in decision-
making processes (Hartley and Somerville, 2015). Fewer studies have focused on the 
neural mechanisms, particularly using a computational modelling approach, to track 
reinforcement learning processes over time. Resting-state functional connectivity in a 
large sample of adolescents suggested that the ventral striatal and broader basal 
ganglia structures that track model-free and model-based prediction errors exhibit 
substantial reorganization during development (Váša et al., 2020). However, there 
may be differential recruitment of frontal areas between the two strategies, with model-
based learning additional recruiting lateral prefrontal cortex and posterior parietal 
cortex (Daw et al., 2011; Drummond and Niv, 2020; Lee et al., 2014; Lockwood et al., 
2020b).  
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Aging 
 
As in adolescence, working memory ability and sensitivity to incentivization might be 
an important component of understanding aging-related changes in model-based 
compared to model-free learning. For example, one study showed that while in older 
adults their use of a model-based strategy was lower than in young adults, ability to 
be model-based was associated with memory performance (Worthy et al., 2014). 
Evidence that older adults display reduced model-based control compared to younger 
adults has been found on both tasks that incentivized model-based learning (Bolenz 
et al., 2019; Figure 4B) and without incentives (Eppinger et al., 2013). This is important 
to establish whether older adults are simply unwilling to engage the effort required for 
model-based learning when it is not incentivized, rather than displaying reduced 
learning. Another study also found reduced model-based learning in older adults, 
driven by a focus on the outcomes themselves, rather than updating the model 
(Hämmerer et al., 2019). Behavioral evidence of impaired model-based learning in 
older age are consistent with imaging work suggesting lower engagement of prefrontal 
regions when learning task contingencies (Eppinger et al., 2015).. Future work should 
directly relate age-related differences in model-based control to underlying neural 
systems. 
 

 
Figure 4. Development of model-based learning during adolescence and decrease in older age. 
(A) Longitudinal data from adolescents shows development of model-based control with age (Vaghi et 
al., 2020). (B) Older adults show less model-based influence than younger adults. Younger adults also 
increase the contribution of model-based processing when it is incentivized (high stakes) compared to 
not incentivized (low stakes), whereas this is not the case for older adults (Bolenz et al., 2019). 
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Pavlovian vs. Instrumental Learning 
 
Another key distinction in learning is whether learning is Pavlovian or instrumental. 
Pavlovian learning is thought to reflect evolutionarily ancient learning processes that 
bias humans and other animals to automatically approach rewards in the environment 
and to withdraw from losses or punishments. This Pavlovian system is thought to 
interfere with instrumental learning systems, which can be model-free or model-based, 
that flexibly learn associations between actions and outcomes without being unduly 
influenced by pre-wired responses. Dissociating these different processes has often 
been done during experiments that directly pit action (make a response or withhold a 
response) and valence (reward or punishment outcomes; Figure 3C). In healthy adults 
this work has shown that people display a strong Pavlovian bias, that is they have 
tendency to approach rewards and avoid losses (Algermissen et al., 2020; Guitart-
Masip et al., 2012, 2011). Additionally, the ventral tegmental area and striatum have 
been associated with go compared to no-go responses (Algermissen et al., 2020; 
Guitart-Masip et al., 2011). 
 
Adolescence 
 
Raab & Hartley (2020) compared reward and punishment learning as well as the 
tendency to ‘go’ (initiate an action) vs. ‘no-go’ (withhold an action) in children (8-12), 
adolescents (13-17), and adults (18-25 years). Relative to both children and adults, 
adolescents exhibited attenuated ‘go’ and Pavlovian (action-consistent-with-valence) 
biases, which the authors hypothesized might promote unbiased exploration in novel 
contexts. Another more recent study had learning conditions where participants had 
to respond to reward to win but not respond to punishments to avoid losing. In a large 
sample across childhood to adolescence (age 9-18, n=742) it was found that go biases 
decreased with age (Pauli et al., 2022). So far, to our knowledge, the development of 
associated neural systems has not been addressed. 
 
Aging 
 
In older adult samples, research is still in its infancy on age-related changes in 
Pavlovian biases. However, one study used a motor-based Pavlovian learning task 
and found a decrease in Pavlovian attraction towards rewards across age (n = 26,532, 
aged 18-70) (Chen et al., 2018). Because of the nature of the task this decrease in 
Pavlovian attraction meant that older adults were less optimal at the task. The authors 
discussed the possible influence of neurobiology on these effects since Pavlovian 
biases have been shown to involve opponency between dopaminergic and 
serotonergic systems. Given that both systems show age-dependent differences (van 
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Dyck et al., 2002, 2000) future pharmacological studies could manipulate these 
systems and measure resulting age differences in Pavlovian behaviors. 

Impact of Outcome Type  
 
Much of the research on reward-based decision making and reinforcement learning 
generally, and the work reviewed on adolescence and aging, uses financial gains as 
the outcome. However, for some categories of decision making, the nature of age-
related differences can vary depending on the type of outcome. In particular, social 
rewards like smiling faces, peer feedback and helping others may differ from purely 
self-benefitting financial outcomes. 
 
Social vs. Non-social Outcomes 
 
Increased sensitivity to social rewards has been shown for both adolescents and older 
adults relative to younger adults in theoretical accounts, behavioral and neural data, 
and in animals as well as humans (Almeling et al., 2016; Carstensen et al., 1999; 
Foulkes and Blakemore, 2016; Somerville, 2013). Comparing data from adults of 
different ages has shown greater nucleus accumbens activity during social reward 
delivery (smiling faces) than money in older adults but the reverse pattern in young 
adults (Rademacher et al., 2014). Similarly adolescents and children may prefer social 
rewards to money whereas young adults have more equal preferences (Wang et al., 
2017). Social interactions can also introduce risks or costs in a similar way to effort, 
time and uncertainty (Soutschek and Tobler, 2018). In the trust game, money 
transferred by the “investor” is at risk as it may not be returned by the trustee. 
Interestingly studies that showed age-related declines in financial risk-taking found 
willingness to transfer money in the trust game was either stable (Josef et al., 2016) 
or increased in later life (Falk et al., 2018). Adolescents may place particularly high 
value on what others think. When the risk of peer rejection must be weighed up against 
other risks, adolescents’ sensitivity to social outcomes could result in dangerous 
behaviors like drug use (Blakemore, 2018). The literature on how peer observation 
impacts learning and decision making in adolescence is outside the scope of this 
Chapter but can promote positive behaviors such as prosociality as well as more 
negative choices (Andrews et al., 2021). Robust evidence is now emerging that older 
adults are relatively more prosocial than younger adults on measures of choices, as 
well as temporal and effort-based discounting (Cutler et al., 2021a; Lockwood et al., 
2021; Mayr and Freund, 2020; Sparrow and Spaniol, 2018). 
 
Differences across the lifespan in how (pro)social rewards are valued and the impact 
this has on effort-based or intertemporal choices links to the question of whether social 
information is processed by different areas or computations in the brain (Lockwood et 
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al., 2020a). For example, learning when rewards are for another person can be 
captured by the same reinforcement learning models as learning for oneself but 
depends, in part, on distinct brain areas and neurotransmitter systems (Lockwood et 
al., 2016; Martins et al., 2022). Consistent with the findings above, when learning for 
themselves, older adults (age 60-80) were slower and were not as influenced by 
previous rewards that they received compared to younger adults (age 18-36). 
Intriguingly however, young and older adults were just as good at learning what would 
help the anonymous other person. Therefore, older adults’ ability to learn what helped 
others was ‘preserved’ (Cutler et al., 2021b). Future work can investigate whether 
these preserved learning abilities could be used to support healthy aging. Differences 
in the development of learning for oneself compared to another person were also 
found in adolescence (aged 9-21). Learning for other showed more protracted 
development than learning for self, in both analysis of learning rates and relative brain 
activity (Westhoff et al., 2021). 

Challenges and Opportunities 
 
Advances in neuroimaging, computational modelling and behavioral tasks have 
enabled a wealth of research on reward processing and learning across the lifespan. 
Future developments in these areas bring further exciting opportunities, both for 
progress in research and a variety of applications. Adolescence is a period of high risk 
for the onset of mental disorders (Kessler et al., 2007) and the development of 
disorders involving antisocial or disruptive behavior (Maughan et al., 2004). Difficulties 
or differences in reinforcement learning have been linked to mood and anxiety 
disorders (Pike and Robinson, 2022), antisocial behavior (Blair, 2013; Pauli and 
Lockwood, 2022) and autism (Crawley et al., 2020). Older adulthood is associated 
with changes in cognitive functions, including learning and decision making, as part of 
healthy aging or age-related disorders (Lighthall, 2020; Sparrow and Spaniol, 2016). 
Research on reward processing and learning across the lifespan is therefore vital to 
support development from early childhood to later life. However, there are also 
challenges associated with any developmental research and particularly when 
assessing age-related changes in neural data or parameters from computational 
models.  
 
Cross-sectional vs. Longitudinal Designs 
 
For practical reasons, much of the work on adolescence and aging has adopted cross-
sectional designs. Particularly for samples to compare young adulthood to old age, the 
timespan could be as high as 82 years (age 18-100). Given that interest in 
reinforcement learning with formal mathematic models has possibly only been around 
for the last 30 years, it is unsurprising that longitudinal datasets simply do not yet exist, 
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and there are many challenges in establishing these. However, cross-sectional work 
is not necessarily a problem if the design and interpretation are appropriate. For 
example, with cross-sectional data it is highly debated is whether it is correct to use 
mediation analysis, due to the assumptions of causality and how predictors relate to 
each other in time (O’Laughlin et al., 2018; Pek and Hoyle, 2016; Raz and 
Lindenberger, 2011; Rohrer et al., 2022).  
 
Another issue is whether age differences are due to aging itself or cohort effects 
(Fosse and Winship, 2019), particularly if the process might be more susceptible to 
historical or cultural influences such as social behaviors. There are several ways this 
question can be addressed. First, examining behaviors with clear neurobiological 
underpinnings like reinforcement learning allows testable hypotheses about the 
expected changes with age in the associated brain structures or function. For 
biological mechanisms such as dopamine function, with established age-related 
changes, one possibility for future work is to relate direct measures of that function to 
choices or behaviors, instead of numerical age (Berry et al., 2019). Another approach 
that is gaining attention for benefits such as generalizability and inclusivity is data 
collection in multiple different cultures and countries. This also has benefits for lifespan 
research, as any age differences thought to be due to universal and biological 
processes should be found regardless of culture or nationality. One important 
consideration in this work is to account for differences in life expectancy between 
countries, particularly when examining financial behaviors. Adjusting age for life 
expectancy is one way of resolving this and has the additional benefit of mixing cohorts 
(Cutler et al., 2021a). Large datasets additionally allow age to be modelled as a 
continuous predictor, rather than between-group comparisons, with enough power to 
detect non-linear effects (for example quadratic and cubic trends). Finally, accelerated 
longitudinal designs combine benefits of longitudinal research with the practical 
constraints of generating results more quickly (Galbraith et al., 2014). Studies using 
this approach of following multiple cohorts each at a different age for a shorter time 
than fully longitudinal designs are already common in adolescent research and could 
be applied more to development in later life. 
 
Measuring and comparing neural signals at different ages 
 
The most common neuroimaging technique discussed in this Chapter is fMRI, which 
measures blood oxygenation in the brain as a proxy of neural activity. This presents 
challenges with comparing signals between participants of different ages as 
vasculature changes with age and this affects blood flow. One approach to minimize 
the risk of misinterpreting age differences is to use breath holding paradigms as an 
index of vasculature reactivity that can be incorporated in analysis (Moses et al., 2014; 
Tsvetanov et al., 2021). The very loud noise and requirement to stay still for long 
periods also raise issues with using fMRI to study development in the youngest and 
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oldest participants. Developments in other brain imaging methods such as 
magnetoencephalography (MEG) or functional near infrared spectroscopy (fNIRS) 
may offer exciting opportunities for future research, particularly with young children or 
older participants who cannot travel. 
 
Comparing cognitive computational models across ages 
 
A final challenge and opportunity is applying computational models of behavior to 
different age groups. There are different model-fitting procedures available and 
researchers must select the best approach (Lockwood and Klein-Flügge, 2020). One 
choice is whether to fit the model across all participants, meaning a single model will 
be selected for further analysis, or run model comparison on each age group 
separately, allowing different models to “win”. If fitting models separately reveals a 
different model is best for each age group, it impossible to compare any parameters 
that are not present in all models. One study using a reversal learning task found the 
best model of adolescents’ learning had static learning rates for reward and 
punishment, whereas adults’ learning was best captured with a learning rate that 
varied over time (Crawley et al., 2020). Other findings showed adults integrated more 
information, such as whether it was a gain or a loss, than adolescents during learning 
(Palminteri et al., 2016). While this makes some parameters incomparable, it provides 
insight into broader differences in how adolescents and adults complete the task. 
Differences in model fit between age groups may also support the results of comparing 
parameter values. For example, while young adults’ learning to benefit themselves 
and someone else was best captured with separate recipient-specific learning rates, 
there was stronger evidence in favor of a model with a single combined learning rate 
for older adults (Cutler et al., 2021b). 

Future Directions 
 
While the paradigms outlined can provide unique insights into how human decision-
making changes across the lifespan, recently it has been highlighted that most of the 
tasks take on a narrow form that may not reflect all real-world decision problems 
(Mobbs et al., 2018). Specifically, participants are presented with binary choices 
between two options. However, in the real world, decisions are often about whether to 
move on from a current location to another (Le Heron et al., 2020), or whether to 
engage with one action for rewards or keep searching for another (Khalighinejad et 
al., 2021), for example whether to leave one job or search for a better alternative. Such 
continuous, sequential decisions may involve a range of the individual decision 
variables outlined above (effort, delay, risk), such that making an optimal choice 
involves integrating several of them to understand how time can be best allocated 
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within an environment. Such an approach may offer a more ecological representation 
of how humans learn to make good decisions over the lifespan.   
 
Paradigms based on these principles have already proven fruitful. They have revealed 
important insights into the role of the ACC in guiding decisions in young adults (Kolling 
et al., 2012), been used to probe decision-making in older adults (Le Heron et al., 
2020), and revealed how higher levels of exploration in adolescence may actually be 
optimal for navigating new, unknown environments (Lloyd et al., 2021). Future 
research using these tasks and approaches may be able to disentangle some of the 
contradictory findings outlined above, by examining how people make sequential 
choices in different environments. 

Conclusions 
 
The behavioral and neural systems supporting reward and reinforcement learning 
show similarities and differences across the adult lifespan from adolescence to older 
age. There are many challenges and opportunities for the future of adult lifespan 
research and important directions for the field to take. 
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Glossary 
 
Adolescence: phase of the lifespan beginning with the onset of physical puberty and 
ending with the assumption of adult roles.  
 
Aging: the sequential or progressive change in an organism that leads to an 
increased risk of debility, disease, and death. Senescence consists of these 
manifestations of the aging process. 
 
Temporal discounting: The rate at which time delay devalues reward. 
 
Effort discounting: The rate at which cognitive or physical efforts devalue reward. 
 
Subjective Value: predicted or experienced benefits of an outcome, given the 
individual’s internal and external state. Often a quantity in a computational model of 
decision-making or learning. 
 
Risk: the degree to which all situational outcomes and their mathematical 
probabilities are known. 
 
Uncertainty: The degree to which past, present or future states and events are 
known. 
 
Computational model: a mathematical formalization of the interactions among 
assumed underlying cognitive processes required to perform a task, which allows for 
estimating contributions of component processes in complex cognition.  
 
Reinforcement learning: incremental learning from feedback such as rewards or 
punishments, or other valenced outcomes, which depends on the detection of value 
signals and their integration over repetitions.  
 
Model-based learning: acquiring a contingent or transitional structure of the 
environment to represent sequences of choices or actions to maximize valuable 
outcomes through incremental reinforcement.  
 
Model-free learning: acquiring the structure of associations between choices or 
actions and valuable outcomes through incremental reinforcement.  
 
Pavlovian learning: the tendency to seek reward and avoid punishment regardless 
of feedback. 
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